Modules

In previous chapter, we saw the Zen of Python . We also noticed that this resides in this module. In this chapter, we discuss about modules. We also study how to create modules.

What is a module?

According to official documentation, a module is a file containing Python definitions and statements. The file name is the module name with the suffix .py appended.

An Example

In a directory, create a file called fibo.py and paste the following code in it.

fibo.py

# Fibonacci numbers module

    def fib(n):    # write Fibonacci series up to n
        a, b = 0, 1
        while b < n:
            print(b, end=' ')
            a, b = b, a+b
        print()

    def fib2(n):   # return Fibonacci series up to n
        result = []
        a, b = 0, 1
        while b < n:
            result.append(b)
            a, b = b, a+b
        return result

Now open ipython (ipython3) in the same directory and execute the following statements:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol table; it only enters the module name fibo there. Using the module name you can access the functions:

>>> fibo.fib(1000)
    1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
    >>> fibo.fib2(100)
    [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

More ways to import methods from a module

There is a variant of the import statement that imports names from a module directly into the importing module’s symbol table. For example:

>>> from fibo import fib, fib2
    >>> fib(500)
    1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the example, fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
    >>> fib(500)
    1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_). In most cases Python programmers do not use this facility since it introduces an unknown set of names into the interpreter, possibly hiding some things you have already defined.

Executing modules as scripts

When you run a Python module with:

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with the __name__ set to "__main__". That means that by adding this code at the end of your module:

if __name__ == "__main__":
        import sys
        fib(int(sys.argv[1]))

you can make the file usable as a script as well as an importable module, because the code that parses the command line only runs if the module is executed as the “main” file:

python fibo.py 50 1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run:

>>> import fibo
    >>>

This is often used either to provide a convenient user interface to a module, or for testing purposes (running the module as a script executes a test suite).

The Module Search Path

When a module named spam is imported, the interpreter first searches for a built-in module with that name. If not found, it then searches for a file named spam.py in a list of directories given by the variable sys.path. sys.path is initialized from these locations:

  • The directory containing the input script (or the current directory when no file is specified).
  • PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).
  • The installation-dependent default.

Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example, the module name A.B designates a submodule named B in a package named A. Just like the use of modules saves the authors of different modules from having to worry about each other’s global variable names, the use of dotted module names saves the authors of multi-module packages like NumPy or the Python Imaging Library from having to worry about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and sound data. There are many different sound file formats (usually recognized by their extension, for example: .wav, .aiff, .au), so you may need to create and maintain a growing collection of modules for the conversion between the various file formats. There are also many different operations you might want to perform on sound data (such as mixing, adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be writing a never-ending stream of modules to perform these operations. Here’s a possible structure for your package (expressed in terms of a hierarchical filesystem):

sound/                          Top-level package
      __init__.py               Initialize the sound package
      formats/                  Subpackage for file format conversions
              __init__.py
              wavread.py
              wavwrite.py
              aiffread.py
              aiffwrite.py
              auread.py
              auwrite.py
              ...
      effects/                  Subpackage for sound effects
              __init__.py
              echo.py
              surround.py
              reverse.py
              ...
      filters/                  Subpackage for filters
              __init__.py
              equalizer.py
              vocoder.py
              karaoke.py
              ...

When importing the package, Python searches through the directories on sys.path looking for the package subdirectory.

The __init__.py files are required to make Python treat the directories as containing packages; this is done to prevent directories with a common name, such as string, from unintentionally hiding valid modules that occur later on the module search path. In the simplest case, __init__.py can just be an empty file, but it can also execute initialization code for the package or set the __all__ variable, described later.

Users of the package can import individual modules from the package, for example:

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage) of the package, or some other name defined in the package, like a function, class or variable. The import statement first tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails to find it, an ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must be a package; the last item can be a module or a package but can’t be a class or function or variable defined in the previous item.


Reference

This chapter is copied from Official Python Documentation